Gambaran umum
Hal yang membedakan unsur satu dengan lainnya adalah jumlah proton dalam inti atom tersebut. Misalnya, seluruh atom karbon memiliki proton sebanyak 6 buah, sedangkan atom oksigen memiliki proton sebanyak 8 buah. Jumlah proton pada sebuah atom dikenal dengan istilah nomor atom (dilambangkan dengan Z).
Unsur paling ringan adalah hidrogen dan helium. Hidrogen dipercaya sebagai unsur yang ada pertama kali di jagad raya setelah terjadinya Big Bang. Seluruh unsur-unsur berat secara alami terbentuk (baik secara alami ataupun buatan) melalui berbagai metode nukleosintesis. Hingga tahun 2005, dikenal 118 unsur yang diketahui, 93 unsur diantaranya terdapat di alam, dan 23 unsur merupakan unsur buatan. Unsur buatan pertama kali diduga adalah teknetium pada tahun 1937. Seluruh unsur buatan merupakan radioaktif dengan waktu paruh yang pendek, sehingga atom-atom tersebut yang terbentuk secara alami sepertinya telah terurai.
Tata nama
Penamaan unsur telah jauh sebelum adanya teori atom suatu zat, meski pada waktu itu belum diketahui mana yang merupakan unsur, dan mana yang merupakan senyawa. Ketika teori atom berkembang, nama-nama unsur yang telah digunakan pada masa lampau tetap dipakai. Misalnya, unsur "cuprum" dalam Bahasa Inggris dikenal dengan copper, dan dalam Bahasa Indonesia dikenal dengan istilah tembaga. Contoh lain, dalam Bahasa Jerman "Wasserstoff" berarti "hidrogen", dan "Sauerstoff" berarti "oksigen".
Nama resmi dari unsur kimia ditentukan oleh organisasi IUPAC. Menurut IUPAC, nama unsur tidak diawali dengan huruf kapital, kecuali berada di awal kalimat. Dalam paruh akhir abad ke-20, banyak laboratorium mampu menciptakan unsur baru yang memiliki tingkat peluruhan cukup tinggi untuk dijual atau disimpan. Nama-nama unsur baru ini ditetapkan pula oleh IUPAC, dan umumnya mengadopsi nama yang dipilih oleh penemu unsur tersebut. Hal ini dapat menimbulkan kontroversi grup riset mana yang asli menemukan unsur tersebut, dan penundaan penamaan unsur dalam waktu yang lama (lihat kontroversi penamaan unsur).
Lambang kimia
Sebelum kimia menjadi bidang ilmu, ahli alkemi telah menentukan simbol-simbol baik untuk logam maupun senyawa umum lainnya. Mereka menggunakan singkatan dalam diagram atau prosedur; dan tanpa konsep mengenai suatu atom bergabung untuk membentuk molekul. Dengan perkembangan teori zat, John Dalton memperkenalkan simbol-simbol yang lebih sederhana, didasarkan oleh lingkaran, yang digunakan untuk menggambarkan molekul.
Sistem yang saat ini digunakan diperkenalkan oleh Berzelius. Dalam sistem tipografi tersebut, simbol kimia yang digunakan adalah singkatan dari nama Latin (karena waktu itu Bahasa Latin merupakan bahasa sains); misalnya Fe adalah simbol untuk unsur ferrum (besi), Cu adalah simbol untuk unsur Cuprum (tembaga), Hg adalah simbol untuk unsur hydrargyrum (raksa), dan sebagainya.
Simbol non-unsur
Non unsur, khususnya dalam kimia organik dan organometalik, seringkali menggunakan simbol yang terinspirasi oleh simbol-simbol unsur kimia. Berikut adalah contohnya:
Cy - sikloheksil; Ph - fenil; Bz - benzoil; Bn - benzil; Cp - Siklopentadiena; Pr - propil; Me - metil; Et - etil; Tf - triflat; Ts - tosil; Hb - hemoglobin.
Sifat periodik adalah sifat yang berubah secara beraturan sesuai dengan kenaikan nomor Atom, yaitu dari kiri kekanan dalam satu periode atau dari kiri kekanan dalam satu golongan.
Sifat-Sifat Keperiodikan Unsur
1. Jari-jari Atom
Jari-jari atom adalah jarak dari inti hingga kulit elektron terluar.
Semakin besar nomor atom unsur-unsur segolongan, semakin banyak pula jumlah kulit elektronnya, sehingga semakin besar pula jari-jari atomnya.
Jadi : dalam satu golongan (dari atas ke bawah), jari-jari atomnya semakin besar.
Dalam satu periode (dari kiri ke kanan), nomor atomnya bertambah yang berarti semakin bertambahnya muatan inti, sedangkan jumlah kulit elektronnya tetap.
Akibatnya tarikan inti terhadap elektron terluar makin besar pula, sehingga menyebabkan semakin kecilnya jari-jari atom. Jadi : dalam satu periode (dari kiri ke kanan), jari-jari atomnya semakin kecil.
2. Afinitas Elektron
Adalah energi yang dilepaskan atau diserap oleh atom netral dalam bentuk gas apabila menerima sebuah elektron untuk membentuk ion negatif
Unsur golongan utama memiliki afinitas elektron bertanda negatif, kecuali golongan IIA dan VIIIA. Afinitas elektron terbesar dimiliki golongan VIIA..
Dalam satu golongan (dari atas ke bawah), harga afinitas elektronnya semakin kecil Dalam satu periode (dari kiri ke kanan), harga afinitas elektronnya semakin besar.
Contoh: Cl(g) + e¯ → Cl¯(g) (∆H=-348kj)
3. Energi Ionisasi
Adalah energi minimum yang diperlukan atom netral dalam wujud gas untuk melepaskan satu elektron sehingga membentuk ion bermuatan +1 (kation).
Jika atom tersebut melepaskan elektronnya yang ke-2 maka akan diperlukan energi yang lebih besar (disebut energi ionisasi kedua), dst.
EI 1< style="font-style: italic;">bertambah sehingga gaya tarik inti terhadap elektron terluar semakin kecil. Akibatnya elektron terluar semakin mudah untuk dilepaskan.
Dalam satu periode (dari kiri ke kanan), EI semakin besar karena jari-jari atom semakin kecil sehingga gaya tarik inti terhadap elektron terluar semakin besar/kuat. Akibatnya elektron terluar semakin sulit untuk dilepaskan .
Contoh : 11 Na + energi ionisasi → Na+ + e
4. Keelektronegatifan
Adalah kemampuan suatu unsur untuk menarik elektron dalam molekul suatu senyawa (dalam ikatannya).Diukur dengan menggunakan skala Pauling yang besarnya antara 0,7 (keelektronegatifan Cs) sampai 4 (keelektronegatifan F).
Dalam satu periode (dari kiri ke kanan), harga keelektronegatifan semakin besar.
Dalam satu golongan (dari atas ke bawah), harga keelektronegatifan semakin kecil.
Dalam satu golongan dari atas ke bawah
• Afinitas elektron semakin kecil
• Jari-jari atom semakin besar
• Energi ionisasi semakin kecil
• Elektronegativitas semakin kecil
Dalam satu perioda dari kiri ke kanan
1. Jari-jari atom semakin kecil
2. Afinitas elektron semakin besar
3. Energi ionisasi semakin besar
4. Elektronegativitas semakin besar
Titik leleh dan titik didih
Terdapat gaya tarik menarik yang kuat antara ion-ion pada masing-masing oksida dan gaya tarik menarik ini membutuhkan energi yang besar untuk diputuskan. Oleh karena itulah oksida-oksida ini memiliki titik leleh dan titik didih yang tinggi.
Daya hantar arus listrik
Tidak ada satupun dari oksida-oksida logam periode 3 dapat menghantarkan arus listrik pada keadaan padatnya, tapi elektrolisis mungkin dilakukan jika dicairkan. Cairannya dapat menghantarkan arus listrik karena adanya pergerakan dan perubahan muatan ion-ion yang ada.
Contoh pentingnya adalah elektrolisis alumunium oksida dalam pembuatan alumunium. Apakah kita dapat mengelektrolisis cairan natrium oksida itu tergantung pada cairan / lelehannya apakah menyublim atau terurai pada keadaan biasa atau tidak. Jika menyublim, maka tak akan didapatkan cairan untuk dielektrolisis.
Magnesium dan alumunium oksida memiliki titik leleh yang sangat tinggi sehingga sulit untuk dielektrolisis dalam laboratorium sederhana.
PERKEMBANGAN TABEL PERIODIK UNSUR
1. Hukum Triade Dobereiner
Pada tahun 1829, Johan Wolfgang Dobereiner, seorang professor kimia di Jerman, mengemukakan bahwa massa atom relatif Strontium sangat dekat dengan massa rata-rata dari dua unsur lain yang mirip dengan strontium, yaitu Kalsium dan Barium. Dobereiner juga menemukan beberapa kelompok unsur lain seperti itu. Karena itu, Dobereiner mengambil kesimpulan bahwa unsur-unsur dapat dikelompokkan ke dalam kelompok-kelompok tiga unsur yang disebutnya Triade. Akan tetapi, Dobereiner belum berhasil menunjukkan cukup banyak triade sehingga aturan tersebut bermanfaat.
Penggambaran Triade Doberainer adalah sebagai berikut :
TRIADE Ar Rata-rata Unsur ditengah
Kalsium 40 88,5
Stronsium ?
Barium 137
Meskipun gagasan yang dikemukakan oleh Dobereiner selanjutnya gugur (tidak berhasil), tetapi hal tersebut merupakan upaya yang pertama kali dilakukan dalam menggolongkan unsur.
1. Hukum Oktaf Newlands
Pada tahun 1866, John A.R Newlands seorang ahli kimia berkebangsaan Inggris mengemukakan bahwa unsur-unsur yang disusun berdasarkan urutan kenaikan massa atomnya mempunyai sifat yang akan berulang tiap unsur kedelapan. Artinya, unsur pertama mirip dengan unsur kedelapan, unsur kedua mirip dengan unsur kesembilan, dan seterusnya.
Berikut ini disampaikan pengelompokan unsur berdasarkan hukum oktaf Newlands, yaitu sebagai berikut :
H F Cl Co/Ni Br Pd I Pt
Li Na K Cu Rb Ag Cs Tl
Be Mg Ca Zn Sr Cd Ba/V Pb
B Al Cr Y Ce/La U Ta Th
C Si Ti In Zr Sn W Hg
N P Mn As Di/Mo Sb Nb Bi
O S Fe Se Ro/Ru Te Au Os
Beberapa unsur ditempatkan tidak urut sesuai massanya dan terdapat dua unsur yang ditempatkan di kolom yang sama karena kemiripan sifat.
2. Sistem Periodik Mendeleyev
Pada tahun 1869, Dmitri Ivanovich Mendeleyev seorang ahli kimia berkebangsaan Rusia menyusun 65 unsur yang sudah dikenal pada waktu itu. Mendeleev mengurutkan unsur-unsur berdasarkan kenaikan massa atom dan sifat kimianya.
Pada waktu yang sama, Julius Lothar Meyer membuat susunan unsur-unsur seperti yang dikernukakan oleh Mendeleyev. Hanya saja, Lothar Meyer menyusun unsur-unsur tersebut berdasarkan sifat fisiknya. Meskipun ada perbedaan, tetapi keduanya menghasilkan pengelompokan unsur yang sama.
Mendeleyev menyediakan kotak kosong untuk tempat unsur-unsur yang waktu itu belum ditemukan, seperti unsur dengan nomor massa 44, 68, 72, dan 100. Mendeleyev telah meramal sifat-sifat unsur tersebut dan ternyata ramalannya terbukti setelah unsur-unsur tersebut ditemukan. Susunan unsur-unsur berdasarkan hukum Mendeleev disempurnakan dan dinamakan sistem periodik Mendeleyev.
Sistem periodik Mendeleev terdiri atas golongan (unsur-unsur yang terletak dalam satu kolom) dan periode (unsur-unsur yang terletak dalam satu baris). Tabel sistem periodik Mendeleyev yang dibuat adalah sebagai berikut :
Periode Gol.I Gol.II Gol.III Gol.IV Gol.V Gol.VI Gol.VII Gol.VIII
1 H 1
2 Li 7 Be 9,4 B 11 C 12 N 14 O 16 F 19
3 Na 23 Mg 24 Al 27,3 Si 28 P 31 S 32 C 35,5
4 K 39 Ca 40 ? (44) Ti 48 V 51 Cr 52 Mn 55 Fe 56, Co 59
Ni 59, Cu 63
5 Cu 63 Zn 65 ? (68) ? (72) As 75 Se 78 Br 80
6 Rb 86 Sr 87 ?Yt 88 Zr 90 Nb 94 Mo 96 ? (100) Ru 104, Rh 104
Pd 106, Ag 108
7 Ag 108 Cd 112 In 115 Sn 118 Sb 122 Te 125 I 127 ?
8 Cs 133 Ba 137 ?Di 138 ?Ce 140 ? ? ?
9 ? ? ? ? ? ? ?
10 ? ? ?Er 178 ?La 180 Ta 182 W 184 ? Os 195, Ir 197
11 Au 199 Hg 200 Tl 204 Pb 207 Bi 208 ? ? Pt 198, Au 199
12 ? ? ? Th 231 ? U 240 ?
3. Pengelompokan Unsur Berdasarkan Sistem Periodik Modern
Sistem periodik Mendeleyev dikemukakan sebelum penemuan teori struktur atom, yaitu partikel-partikel penyusun atom. Partikel penyusun inti atom yaitu proton dan neutron, sedangkan elektron mengitari inti atom. Setelah partikel-partikel penyusun atom ditemukan, ternyata ada beberapa unsur yang mempunyai jumlah partikel proton atau elektron sama, tetapi jumlah neutron berbeda. Unsur tersebut dikenal sebagai isotop. Jadi, terdapat atom yang mempunyai jumlah proton dan sifat kimia sama, tetapi massanya berbeda karena massa proton dan neutron menentukan massa atom.
Keperiodikan sifat fisika dan kimia unsur disusun berdasarkan nomor atomnya. Pernyataan tersebut disimpulkan berdasarkan hasil percobaan Henry Moseley pada tahun 1913. Sistem periodik yang telah dikemukakan berdasarkan percobaan Henry Moseley merupakan sistem periodik modern dan masih digunakan hingga sekarang.
4. Golongan dan Periode Unsur dalam Tabel Sistem Periodik Unsur Modern
Unsur-unsur dalam tabel sistem periodik modern disusun berdasarkan kenaikan nomor atom. Karena sistem periodik yang disusun berbentuk panjang, maka tabel periodik yang sekarang ini disebut tabel periodik panjang. Terkadang disebut pula tabel periodik modern, dikarenakan disusun oleh konsep-konsep yang sudah modern.
Pada tabel periodik bentuk panjang, juga dikenal istilah periode dan golongan. Penyusunan unsur dengan arah mendatar ke kanan disebut periode, sedangkan penyusunan unsur dengan arah ke bawah disebut golongan. Tabel periodik bentuk panjang terdiri atas 7 periode dan 8 golongan. Adapun tampilan fisik tabel Sistem Periodik Modern, adalah sebagai berikut :
SPU Modern
Periode dibedakan menjadi periode pendek dan periode panjang, sedangkan golongan dibedakan menjadi golongan A (golongan utama) dan golongan B (golongan transisi). Periode pendek mencakup periode 1 (terdiri dari 2 unsur), periode 2 (terdiri dari 8 unsur) dan periode 3 (terdiri dari 8 unsur). Sedangkan periode panjang mencakup periode 4 sampai dengan periode 7.
a) Golongan
Golongan unsur pada sistem periodik unsur modern disusun berdasarkan jumlah elektron valensi (elektron yang terletak pada kulit terluar). Unsur dalam satu golongan mempunyai sifat yang cenderung sama dan ditempatkan dalam arah vertikal (kolom).
Pada sistem periodik unsur modern, golongan dibagi menjadi 18 berdasarkan aturan IUPAC. Berdasarkan aturan Amerika, sistem periodik unsur modern dibagi dua golongan yaitu golongan A dan B. Jadi, golongan unsur dari kiri ke kanan ialah IA, IIA, 11113, IVB, VB, VIB, VIIB, VIIIB, IB, 1113, IIIA, IVA, VA, VIA, VIIA, dan VIIIA. Umumnya, digunakan pembagian golongan menjadi A dan B.
Golongan unsur pada sistem periodik unsur modern mempunyai nama khusus yaitu sebagai berikut :
Golongan Nama Khusus Unsur-unsur
IA 1 Alkali Li, Na, K, Rb, Cs, dan Fr
IIA 2 Alkali Tanah Be, Mg, Ca, Sr, Ba, dan Ra
IIIA 13 Boron B, Al, Ga, In, dan Tl
IVA 14 Karbon C, Si, Ge, Sn, dan Pb
VA 15 Nitrogen N, P, As, Sb, dan Bi
VIA 16 Oksigen O, S, Se, Te, dan Po
VIIA 17 Halogen F, Cl, Br, I, dan At
VIIIA 18 Gas Mulia He, Ne, Ar, Kr, Xe, dan Rn
b) Periode
Periode unsur pada sistem periodik unsur modem disusun dalam arah horisontal (baris) untuk menunjukkan kelompok unsur yang mempunyai jumlah kulit sama.
Sistem periodik bentuk panjang terdiri atas 7 periode sebagai berikut :
1) Periode 1 = periode sangat pendek berisi 2 unsur, yaitu H dan He
2) Periode 2 = periode pendek berisi 8 unsur
3) Periode 3 = periode pendek berisi 8 unsur
4) Periode 4 = periode panjang berisi 18 unsur
5) Periode 5 = periode panjang berisi 18 unsur
6) Periode 6 = periode sangat panjang berisi 32 unsur
7) Periode 7 = periode yang unsur-unsurnya belum lengkap berisi 30 unsur
Pada periode 6 termasuk periode sangat panjang, yaitu berisi 32 unsur.
Golongan IIIB periode 6 berisi 14 unsur dengan sifat mirip yang dinamakan golongan lantanida. Begitu juga golongan IIIB periode 7 berisi 14 unsur dengan sifat mirip dinamakan golongan aktinida.Unsur golongan aktinida dan lantanida biasanya dituliskan terpisah di bawah. Golongan lantanida dan aktinida disebut golongan transisi dalam.
Ikatan pada polimer
Polimer seperti poly(etena) – biasa disebut politena – berada pada bentuk molekul yang sangat panjang. Molekul Poli(etena) terbentuk melalui penggabungan molekul etena pada untai atom karbon yang berikatan secara kovalen dengan menarik hidrogen. Untai tersebut dapat becabang sepanjang rantai utama, juga mengandung untai karbon yang menarik hidrogen. Molekul tertarik satu sama lain pada padatan melalui gaya dispersi van der Waals.
Polietena dengan kerapatan tinggi
Polietena dengan kerapatan tinggi memiliki rantai yang tidak bercabang. Sedikit cabang mengakibatkan molekul untuk saling mendekat satu sama lain pada bentuk yang teratur seperti yang sering dijumpai ada bentuk kristalin.Karena molekul berdekatan satu sama lain, gaya dispersi menjadi lebih efektif, dan karenanya plastik relatif lebih kuat dan memiliki titik leleh yang lebih tinggi dibanding polietena dengan kerapatan rendah.
Polietena dengan kerapatan rendah
Polietena dengan kerapatan rendah memiliki cabang pendek di sepanjang untai. Cabang tersebut menghalangi untai tersesun dengan rapi dan rapat. Sebagai hasilnya gaya dispersi berkurang dan kekuatan plastik lebih lemah dan titik leleh lebih rendah. Kerapatannya lebih rendah, dan tentunya menyebabkan ruang yang kosong pada susunan strukturnya.
TEORI DUPLET DAN OKTET DARI G.N. LEWIS MERUPAKAN DASAR IKATAN KIMIA.
Lewis mengemukakan bahwa suatu atom berikatan dengan cara menggunakan bersama dua elektron atau lebih untuk mencapai konfigurasi elektron gas mulia
TEORI INI MENDAPAT BEBERAPA KESULITAN, YAKNI :
1. Pada senyawa BCl3 dan PCl5, atom boron dikelilingi 6 elektron, sedangkan atom fosfor dikelilingi 10 elektron.
2. Menurut teori ini, jumlah ikatan kovalen yang dapat dibentuk suatu unsur tergant~u~g jumlah elektron tak berpasangan dalam unsur tersebut.
Contoh : 8O : 1s2 2s2 2p2 2px2 2py1 2pz1
Ada 2 elektron tunggal. sehingga oksigen dapat membentuk 2 ikatan (H-O-H; O=O).
akan tetapi: 5B : 1s2 2s2 2px1
Sebenarnya hal ini dapat diterangkan bila kita ingat pada prinsip Hund, dimana cara pengisian elektron dalam orbital suatu sub kulit ialah bahwa elektron-elektron tidak membentuk pasangan elektron sebelum masing-masing orbital terisi dengan sebuah elektron.
Contoh : 5B : 1s2 2s2 2px1 (hibridisasi) 1s2 2s1 2px1 2py1
Tampak setelah terjadi hibridisasi untuk berikatan dengan atom B memerlukan tiga buah elektron, seperti BCl3
Menurut teori di atas, unsur gas mulia tidak dapat membentuk ikatan karena di sekelilingnya telah terdapat elektron. Tetapi saat ini sudah diketahui bahwa Xe dapat membentuk senyawa, misalnya XeF2 den XeO2.
Teori lain adalah teori ikatan valensi. Dalam teori ini ikatan antar atom terjadi dengan care saling bertindihan dari orbital-orbital atom. Elektron dalam orbital yang tumpang tindih harus mempunyai bilangan kuantum spin yang berlawanan.
BEBERAPA MACAM IKATAN KIMIA YANG TELAH DIKETAHUI, ANTARA LAIN :
1. Ikatan antar Ikatan kovalen
Ikatan kovalen adalah sejenis ikatan kimia yang dikarakterisasikan oleh pasangan elektron yang saling terbagi (kongsi elektron) di antara atom-atom yang berikatan. Singkatnya, stabilitas tarikan dan tolakan yang terbentuk di antara atom-atom ketika mereka berbagi elektron dikenal sebagai ikatan kovalen.
Ikatan kovalen merangkumi banyak jenis interaksi, yaitu ikatan sigma, ikatan pi, ikatan logam-logam, interaksi agostik, dan ikatan tiga pusat dua elektron.[1][2] Istilah bahasa Inggris untuk ikatan kovalen, covalent bond, pertama kali muncul pada tahun 1939.[3] Awalan co- berarti bersama-sama, berasosiasi dalam sebuah aksi, berkolega, dll.; sehingga "co-valent bond" artinya adalah atom-atom yang saling berbagi "valensi", seperti yang dibahas oleh teori ikatan valensi. Pada molekul H2, atom hidrogen berbagi dua elektron via ikatan kovalen. Kovalensi yang sangat kuat terjadi di antara atom-atom yang memiliki elektronegativitas yang mirip. Oleh karena itu, ikatan kovalen tidak seperlunya adalah ikatan antara dua atom yang berunsur sama, melainkan hanya pada elektronegativitas mereka. Oleh karena ikatan kovalen adalah saling berbagi elektron, maka elektron-elektron tersebut perlu ter-delokalisasi. Lebih jauh lagi, berbeda dengan interaksi elektrostatik ("ikatan ion"), kekuatan ikatan kovalen bergantung pada relasi sudut antara atom-atom pada molekul poliatomik.
Diagram MO yang melukiskan ikatan kovalen (kiri) dan ikatan kovalen polar (kanan) pada sebuah molekul diatomik. Panah-panah mewakili elektron-elektron yang berasal dari atom-atom yang terlibat.
Gagasan ikatan kovalen dapat ditilik beberapa tahun sebelum 1920 oleh Gilbert N. Lewis yang pada tahun 1916 menjelaskan pembagian pasangan elektron di antara atom-atom. Dia memperkenalkan struktur Lewis atau notasi titik elektron atau struktur titik Lewis yang menggunakan titik-titik di sekitar simbol atom untuk mewakili elektron valensi terluar atom. Pasangan elektron yang berada di antara atom-atom mewakili ikatan kovalen. Pasangan berganda mewakili ikatan berganda, seperti ikatan rangkap dua dan ikatan rangkap tiga. Terdapat pula bentuk alternatif lainnya di mana ikatan diwakili sebuah garis.
Konsep awal ikatan kovalen berawal dari gambar molekul metana sejenis ini. Ikatan kovalen tampak jelas pada struktur Lewis, mengindikasikan pembagian elektron-elektron di antara atom-atom.
Ketika gagasan pembagian pasangan elektron memberikan gambaran kualitatif yang efektif akan ikatan kovalen, mekanika kuantum diperlukan untuk mengerti sifat-sifat ikatan seperti ini dan memprediksikan struktur dan sifat molekul sederhana. Walter Heitler dan Fritz London sering diberi kredit atas penjelasan mekanika kuantum pertama yang berhasil menjelaskan ikatan kimia, lebih khususnya ikatan molekul hidrogen pada tahun 1927.[5] Hasil kerja mereka didasarkan pada model ikatan valensi yang berasumsi bahwa ikatan kimia terbentuk ketika terdapat tumpang tindih yang baik di antara orbital-orbital atom dari atom-atom yang terlibat. Orbital-orbital atom ini juga diketahui memiliki hubungan sudut spesifik satu sama lain, sehingga model ikatan valensi dapat memprediksikan sudut ikatan yang terlihat pada molekul sederhana dengan sangat baik.
2. Derajat ikat
Derajat ikat atau orde ikat adalah sebuah bilangan yang mengindikasikan jumlah pasangan elektron yang terbagi di antara atom-atom yang membentuk ikatan kovalen. Istilah ini hanya berlaku pada molekul diatomik. Walaupun demikian, ia juga digunakan untuk mendeskripsikan ikatan dalam senyawa poliatomik.
1. Ikatan kovalen yang paling umum adalah ikatan tunggal dengan hanya satu pasang elektron yang terbagi di antara dua atom. Ia biasanya terdiri dari satu ikatan sigma. Semua ikatan yang memiliki lebih dari satu pasang elektron disebut sebagai ikatan rangkap atau ikatan ganda.
2. Ikatan yang berbagi dua pasangan elektron dinamakan ikatan rangkap dua. Contohnya pada etilena. Ia biasanya terdiri dari satu ikatan sigma dan satu ikatan pi.
3. Ikatan yang berbagi tiga pasang elektron dinamakan ikatan rangkap tiga. Contohnya pada hidrogen sianida. Ia biasanya terdiri dari satu ikatan sigma dan dua ikatan pi.
4. Ikatan rangkap empat ditemukan pada logam transisi. Molibdenum dan renium adalah unsur yang umumnya memiliki ikatan sejenis ini. Contoh ikatan rangkap ditemukan pada Di-tungsten tetra(hpp).
5. Ikatan rangkap lima telah ditemukan keberadaannya pada beberapa senyawa dikromium.
6. Ikatan rangkap enam ditemukan pada molibdenum dan tungsten diatomik.
3. Resonansi
Kebanyakan ikatan dapat dideskripsikan dengan menggunakan lebih dari satu struktur Lewis yang benar (misalnya pada ozon, O3). Dalam diagram lewis (LDS: Lewis dot structure) O3, atom pusat akan memiliki ikatan tunggal dengan satu atom dan ikatan rangkap dua dengan satu atom lainnya. Diagram LDS tidak dapat memberitahukan kita atom mana yang berikatan rangkap; atom pertama dan kedua yang berikatan dengan atom pusat memiliki probabilitas yang sama untuk memiliki ikatan rangkap. Dua struktur yang memungkinkan ini disebut sebagai struktur resonansi. Pada kenyataannya, struktur ozon adalah hibrid resonansi antara dua struktur resonansi yang memungkinkan. Daripada satu ikatan tunggal dan satu ikatan rangkap dua, sebenarnya terdapat dua ikatan 1,5 dengan kira-kira tiga elektron pada setiap atom.
4. Teori saat ini
Saat ini model ikatan valensi telah digantikan oleh model orbital molekul. Dalam model ini, setiap atom yang berdekatan akan memiliki orbital-orbital atom yang saling berinteraksi membentuk orbital molekul yang merupakan jumlah dan perbedaan linear orbital-orbital atom tersebut. Orbital-orbital molekul ini merupakan gabungan antara orbital atom semula dan biasanya berada di antara dua pusat atom yang berikatan.
5. Ikatan Ionik
Ikatan yang terbentuk akibat adanya serah terima elektron membentuk ion positif dan ion negatif yang isoelektronik dengan gas mulia, dan adanya gaya tarik menarik diantara kedua ion tersebut. Dibawah ini beberapa kemungkinan terjadinya ikatan ionik:
• Ikatan ini terjadi ketika ada perbedaan tendensi yang sangat besar dari atom untuk melepas atau menangkap elektron
• Perbedaan terjadi antara logam yang reaktif (gol 1A) dan non logam (gol 7A dan 6A atas)
• Atom logam (IE rendah) kehilangan satu atau dua elektron valensi, sementara atom non logam (EA sangat negatif) menangkap elektron
• Terjadi transfer elektron antara logam dan non logam membentuk ion dengan konfigurasi gas mulia
• Gaya elektrostatik antar ion positif dan negatif membentuk susunan padatan ionik dengan rumus kimia menunjukkan rasio kation terhadap anion (rumus empiris
• Apabila ion-ion terbentuk, mereka akan menyusun dalam kristal 3-D dalam keadaan terpejal.
6. Model Ikatan Ionik
a. Fokus utama model ikatan ionik adalah adanya transfer elektron dari logam ke non logam untuk membentuk ion yang kemudian bersatu membentuk padatan senyawa ionic
b. Berdasarkan fenomena yang terjadi Lewis mengajukan aturan oktet, saat atom-atom berikatan, ia akan melepas, menangkap atau memakai bersama elektron untuk mencapai pengisian kulit terluar 8 (atau 2) electron
Cara Penulisan Transfer Elektron
1. Penggambaran dengan konfigurasi elektron
2. Penggambaran dengan diagram orbital
3. Penggunaan simbol titik elektron Lewis
Aspek Energi dalam Ikatan Ionik Energi Kisi :
a. Misalkan ada suatu reaksi antara unsur logam yang reaktif (Li) dan mudah melepas elektron dengan gas halogen (F) yang cenderung menarik elektron:
Li(g) à Li+(g) + e- IE1 = 520 kJ
F(g) + e- à F-(g) EA = -328 kJ
b. Reaksi total:
Li(g) + F(g) à Li+(g) + F-(g) IE1 + EA = 192 kJ
c. Energi total yang dibutuhkan reaksi ini bahkan lebih besar karena kita harus mengkonversi Li dan F kedalam bentuk gas
d. Akan tetapi eksperimen menunjukkan enthalpi pembentukan padatan LiF (∆H0f) = -617 kJ
e. Jika kedua unsur dalam bentuk gas:
Li+(g) + F-(g) à LiF(g) ∆H0 = -755 kJ
f. Energi kisi adalah perubahan enthalpi yang menyertai ion-ion gas yang bergabung membentuk padatan ionik:
Li+(g) + F-(g) à LiF(s) ∆H0kisi LiF = energi kisi
= -1050 kJ
Sifat-sifat Ikatan Ionik
1. Keras
2. Kaku
3. Rapuh
Ciri-ciri senyawa ionik:
1. Padatan pada suhu kamar.
2. Titik leleh dan titik didih tinggi
Misal: NaCl titik leleh = 801oC dan
titik didih = 1413oC.
3. Senyawa ionik padat umumnya kurang baik menghantar
listrik, tetapi lelehannya menghantar dengan baik.
4. Komposisi kimia dinyatakan sebagai rumus empiris
bukan rumus molekul.
APA ITU ENERGI KISI
Energi kisi adalah perubahan enthalpi yang menyertai ion-ion gas yang bergabung membentuk padatan ionik. Penentuan energi kisi, U, sangat penting dilakukan pada suatu senyawa ionik karena harganya menjadi kendali termodinamika pembentukan senyawa tersebut.
Alasan utama yang menyebabkan ikatan ion stabil adalah adanya daya tarik menarik antara ion, yang terjadi bila senyawa kimia terbentuk dan menghasilkan berkurangnya energi potensial. Untuk mengetahui hal ini, marilah kita perhatikan energi potensial pada dua situasi berikut: situasi pertama adalah kumpulan atom netral dan situasi kedua kumpulan ion. Perhatikan bagaimana energi berubah jika kita pisahkan atom netral dan disatukan kembali partikel itu sebagai ion.
Daya tarik menarik atom netral sangat lemah. Maka untuk memisahkan atom itu hanya butuh sedikit kenaikan energi potensialnya. Tetapi sebaliknya, jika partikel ini dijadikan satu kembali sebagai ion, yang mempunyai daya tarik menarik ion yang kuat, maka energi potensialnya turun besar sekali. Sebagai hasil akhir adalah ion dalam bentuk kristal mempunyai energi potensial lebih rendah daripada atom netral. Energi potensial yang rendah ini disebut energi kisi (lattice energy) dan jumlahnya lebih besar dari pada kenaikan energi potensial yang dibutuhkan untuk membentuk ion. Sebagai hasilnya, pembentukan senyawa ion adalah eksotermis.
Konfigurasi elektron tidak membutuhkan banyak energi untuk mengosongkan kulit valensi suatu logam, jadi energi kisi yang eksotermis sudah cukup untuk mengkompensasi kontribusi endotermik pada seluruh perubahan energi. Meskipun demikian, masuk ke dalam inti gas mulia di bawah kulit terluar membutuhkan sangat banyak energi, lebih banyak dari energi kisi eksotermik yang dapat dihasilkan. Sebagai hasilnya, lepaskan elektron terhenti segera setelah munculnya inti gas.
Untuk nonlogam, penambahan elektron ke kulit valensi dapat dalam bentuk eksotermik atau sedikit endotermik atau sedikit eksotermik. Meskipun demikian, segera setelah kulit valensi terisi penuh setiap elektron yang ditambahkan terpaksa harus mengisi kulit lebih tinggi berikutnya. Masuknya elektro ke tempat yang lebih tinggi tersebut membutuhkan energi lebih banyak, lebih banyak dari energi yang dapat dipenuhi oleh energi kisi. Sebagai hasilnya, unsur nonlogam tidak pernah mencari elektron yang cukup yang dapat menjadi konfigurasi sempurna ns2np6 konfigurasi ”gas mulia”.
Tendensi ion dari banyak unsur-unsur tertentu dapat memiliki konfigurasi gas mulia, dengan 8 elektron pada kulit terluar, merupakan dasar rumus oktet. Bila logam dan nonlogam dari golongan A bereaksi, senyawa ini cenderung mengambil atau melepaskan elektron sampai ada delapan elektron pada kulit terluarnya. Energi kisi adalah perubahan enthalpi yang menyertai ion-ion gas yang bergabung membentuk padatan ionik. Penentuan energi kisi, U, sangat penting dilakukan pada suatu senyawa ionik karena harganya menjadi kendali termodinamika pembentukan
Tidak ada komentar:
Posting Komentar